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Abstract--The solutions of the Navier-Stokes equation for a Newtoniarl flow through a 411 contraclion 
tube were obtained numerically using the Gaterkin finite element method with the nine-rlode Lagrangiarl ele- 
ment which was believed to be one of the most accurate tools for mixed-type interpolating formulations. It 
was proved from this study that the vortex occurrence in the entrance corner region were confirmed but its 
size was gradually decreased with the increase of Reynolds numbers, and that the velocity profiles and pres- 
sure distributions along the applied mesh layers were in agreement with the experimental and the previously 
reported numerical results. 

INTRODUCTION 

In the analysis of the incompressible fluid through 
a contraction tube, the mixed finite element method 
(FEM) has appeared as a relevant and powerffJ tool for 
solvin[,, the Navier-Stokes equations. Recently, a sta- 
ble, accurate, and economic finite element method has 
been searched for the nonlinear steady-state system 
coupled with Convection-Diffusion-Reaction terms, 
such as a tubular reactor design and a chenical  pro- 
cess control The analysis of complex flow problems 
can be performed by one of three alternative R)rmula- 
lions, that is, the velocity-pressure, the stream 
function-vorticity, and the stream function formula- 
lion. In this study, the velocity-pressure formulation is 
mainly used for its popularity and convenience to 
t teat. 

Concerning the FEM which has been adopted for 
solutions of Navier-Stokes equations, difficulty arises 
in forruulating the discretizalion of governing equa- 
tions and in selecting the appropriate interpolating 
functions for velocity and pressure variables. In this 
respect, Huyakorn et al. [1] compared four types of 
quadrilateral elements in terms of the accuracy of in- 
terpolation and showed that the nine-node Lagrangian 
element gave the mosl accurate pressure and velocity 
distributions. On the other hand, as recognized by 
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Kawahara and Takeuchi [2] and others [3-5], Ihe mixed 
finite element Galerkin a uprc.,ach seemed most conve- 
nient to discretize governing equati,.ms describing 
complex flow problems. 

The numerical simulation r the fluid fluw Ihmugh 
a sudden contraction tube has been examined by 
Vrenlas and Duda [6,7] and other research gruups 
[8-10]. The important aspects ~f circular eniD" fluws, 
including an abrupt contraclion prub]em, were recent- 
ly reviewed in Boger's article [[ l]. Dis~ussiuus nlade 
in this review article mainly concern the intensity and 
size of the recirculating vortex and the extra pressure 
loss, or the Couette correction, due to the sudden con- 
traction. In Newtonian flow analysis, most of studies 
reported that streamlines, vurticity dislributions, velo- 
city profiles, excess pressure drops, and entrance 
lengths may be evaluated as functions ol Reynolds 
number and radius ratio 

[n the present work, we deve]up solutiuns of primi- 
tive Navier~Stokes equations governing a Newlonian 
fluid through a 4/1 contraction, tube t:,y employing the 
mixed FEM with the nine-node Lagrangian quadrilate- 
ral elements. Then, results obtained from this study 
are compared with the experimental and other nume- 
rical results in terms of velocity profiles, pressure dis- 
tributions, and vorlex behaviors with Reynolds num- 
ber. 
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Simulation of the Newtonian Flow through an Abruptly Contracted Tube Using a Mixed Finite Element Method 1 1 } 

FORMULATION OF EQUATION 

1. Basic equations 
Consider the isothermal laminar flow of an incom- 

pressible New~onian fluid through a cylindrical and 
axisymmetric contraction tube, as showr in Fig. l. The 
c~mlracfion tube is of radius R extending from z = z~ to 
z 0 connected to a smaller lube of rad',us R/4 which 
extends from z = 0 to z = z 2. 

For the steady-state, axisymmetric, isothermal flow 
of a Newtonian fluid wilh a constant viscosity, the di- 
mensionless equations of motion in cylindrical ooor- 
dinates are given as 

z-component : 

V~V~.~ + VJ~= 

-P.~d. ( (rV~..,-), ,./r + V~.~.]/Re q- g ~ (la) 

r - c o n l p o n e n t  : 

V ,V, . ,~  V~V,,. = 

- P,. ~- ~(rV,),,./r , .+V ... .  ~/'Re+g~ (lb) 

where % and V= represent the radial and the axial 
velocity components in cylindrical coordinates. P in- 
dicates lhe pressure and g the gravitational constant. 
In above equations, subscripts ',r' and ',z' denote first- 
order derivatives with respect to r and z. and the subs- 
cript ',zz' the second-order derivative with respect Io z. 
In this coordinate system, the equation of continuily 
can be shown to be 

(rV,.) ,-/r + V~.,=0. (lc) 

In order to discrelize the Eq(l)  for the domain of 
the flow field, a mixed finite element procedure may 
be employed. By lhe method of weighted residuals, 
the formulalion of the usual Galerkin weak solution 
yields V r, V.:, and P as follows. 

For Ihe axial velocity component: 

2~- ld r  dz (V[ (V.,.V~,.q V=Vz,~)r - V~.~*rP 

+V~2 (V~., + V~.~) r/]Re ) 

- -2~tV~*g~r dr d z -  2 ~ L ~  V : P n , r  dr 

+ (2.,rR/Re) f~, V~*V,...,.nr dz+  (2~rL/Re)- 

t.,, V]V~,n~r dr (2a) 

For the radial velocity component: 

2rrj/~odr dz (V,* (V',.V,.,.+V~V,..~)r-- (rV,*), ,.P 

4 /rV~*),,. (rV,;.,./rRe+V,,~V,..,r/Re] 

-" 2 ~ lV~*g , r  dr d z -  2 ~R fr,. V/"F'n ,. dz 

Gi 

~lll//llll//l#/Im////ll/l///l///ll/llllllllllt[,,, At wall (/~r[), 

V r = V z : I) 

F 
r [/[ttllt~lltlttllttt~lHItlLIJllll Fz,> 
t_ 

z 

AI inlel { f z p ,  AI cenlerlme ( ~ ) ,  AI ouflel (/~.2), 

Specified V z and P, V r = ~fZr r 0 Specified V:, 

V r 0 V r 0 

Fig. 1. A Schematic diagram of the axisymmetric re- 
gion and the illustration of boundary condi- 
tions. 

g 
+ (2~-R/'Re) J r  V~* (rV,.),,.nr d z +  (2~L/Re) �9 

r 

.s V*V,..znzr dr c2b) 
z 

For the pressure: 

2 . , r iP*  (rV,-),,- dr dz+2,-,-iP*Vz,,r dr dz=0  (2c) 

where the superscript ~ indicates the weighting func- 
t ion. 

As shown in Fig. l., a set of the notation F repre- 
sents the boundary of the flow field under conside- 
ration. F,. corresponds to conditions at wall and at cen- 
terline, and F: to conditions of the ento'  and the exit 
of the tube. The total tube length including the con- 
traction part is denoted by L. 

In order to solve above equations, a set of suitable 
bounda O, condilkms for each given boundall," F has 
to be chosen like Ihe ones illuslrated in Fig. 1. These 
are shown below in detail: 

V,.=0, V~,=V.~ (r), P = P o  on (r. z) ~ F~  (3a) 

V , = V z = 0  on (r. z) ~ F,-, i3b! 

V , = V ~ , . = 0  on (r, z) �9 F,-~ (3c) 

V~-V~ (r). V,,z=O on (r, z) c Fz~ . (3d) 

Under these conditions all boundary integral terms in 
weighted residual equations, Eqs. 2(a)-2(c), become to 
vanish at once so thal computation can be done in 
more simplified manner. 
2. Numerica l  s imula t ion  

The next procedure to derive a set of algebraic 
equations from Eq.(2) may be drawn from previous 
works [1,12,13]. The nine-node element shown in Fig. 
2 is a mixed-type imerpolafion which is con~posed of 
quadratic shape funclions for velocities, anc of linear 
shape funclions for a pressure. This is a natural choice 
of interpolatir:~g functions when we recognize the pre- 
sence of the second-order derivatives r velocities but 
only the first-order derivatives fl.~r the pressure in 
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Fig. 2. A mixed interpolation element {a nine-node 
Lagrangian element). 

Eq.(l). 
Th us, velocities and a pressure can be approxima- 

ted using interpolating shape functions like below. 

Vt' (r, z) = 2~ r (r, z) V,, V,* (r, z) = r (r, z) 

(4a) 

P " ( r , z ) = , ~  8~(r ,z)P ,  P*(r,z)=8~(r,z) (4b) 

where the superscript e indicates an element under 
consideration and a and # are nodal points of the ele- 
menL Here, r and 8~, represent a nine-node biqua- 
dratic function and a four-node bilinear shape func- 
tion, respectively. 

By' substituting Eq.(4) into Eq.(2), residual equa- 
lions for an element are obtained in integral forms. 
These integrals should be evaluated over the standard 
elemenl shown in Fig. 2. A Newton-Raphson iteration 
scheme requires the fornmlatkm of the Jacobian ma- 
trix to solve nonlinear residual equations. First of all, 
the element Jacobian matrix can be derived by differ- 
entiating each residual vector wilh respect to system 
variables which are the axial and the radial 'velocities, 
and the pressure. 

Integral expressions shown in element residual 
equations and the element Jacobian matr ix are usually 
evaluated by the use of the numerical iJ:tegralion 
method known as the Gaussian quadrature, By the 
quadrature rule, integration is approximated to weigh- 
ted summation over all applying quadrature points. 
This is; a well-known method in the conventional FEM 
analysis. 

Consequently', all residual and Jacobian forms of 
equations can be computed numerically over the ele- 
ment by Ihe just mentioned rule. 11 follows thai contri- 
butions of residual veclors of each element in the sys- 
tem ate simply assembled element by element to form 
a whole syslem residual vector, 

R ( r  (5) 

Now, it is possible to set up the numerical scheme 
to solve our system of nonlinear equations, Eq.(5). The 
well-known Newton-Raphson method to treat nonline- 
arity has been selected and described below by using 
vector notations. 

J (r �9 A C,,--R,., (6a) 

r = r  r (6b) 

where the subscript n is the iteration number and r is 
the unknown vector to be solved. This method has a 
quadratic convergence which is considered to be fast 
compared to other iteration methods, but unfortunate- 
ly it has a serious drawback which requires a good in- 
itial guess to start iteration with. 

It is noted in Eq.(6a) that an efficient l inear equa- 
tion solver is needed to save the computation t ime and 
to reduce computer nmmory capacity, due to the inver- 
sion of the huge Jacobian matrix. In this respect, the 
unsymmetrical version of 'frontal method' developed 
by Hood [14] has been employed to our problenL It 
has been proved in the literature that this method 
saves much of the core memory because the computer 
needs to memorize variables corresponding to only 
the one short side of the geometry instead of a whole 
system of variables. 

As a termination criterion of the Newton-Raphson 
iteration, we take the form of the standard deviation 
(6") between two consecutive solutions: 

~= [Z, ( r  r Z , r 1 6 2  < IO -6. (7) 

For the case of Re = 1.0, four iteration steps were need- 
ed to satisfy the above convergence crilerion and six 
steps were sufficient for Re = 10.0. 

RESULTS AND DISCUSSION 

1. E l e m e n t a l  m e s h  a n a l y s i s  
Applying the nine-node Lagrangian element to the 

confined geomet~ of a 4/1 contraction tube, we com- 
pose meshes which are concentrated to the sharp edge 
of contraction. The sharp edge point P in the Fig. 3 
shows a geometrically singular behavior. That is; it in- 
volves the drastic change in their magnitudes of vari- 
ables in solving the Navier-Stokes equation. Thus, in 
order to avoid this difficulty, we adopt the specially re- 
fined meshes near the point P as represented in the 
Fig. 3 (The dotted box in Fig. 3 represents magnifica- 
tion of the mesh refinement in that particular region). 
By using six nine-node Lagrangian elements in ver- 
tical placement and by confining the tube length from 
z = -4.8 to z - 1.35 in the axial direction, our problem 
contains 1078 nodes, 252 elements, and 2452 Ul> 
knowns (or algebraic equations). 
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Fig. 3. Finite e l e m e n t  m e s h e s ,  m e s h  l a y e r s  ~L.C, L.2, etc.), and  n o d e s  for a Newton ian  fluid through  the 4 / I con- 

tract ion tube  ( Wi Vr, Vz, P: �9 Vr, V~) with 252  e l e m e n t s ,  1078 n o d e s ,  a n d  2452  u n k n o w n s .  
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Fig. 5. Ve loc i ty  d i s tr ibut ions  a long  the ax i s  for m e s h  
layers  for Re = 1.0 and I0. 

In order to investigate lhe flow behavior in the 
tube, mesh layers are classified into L-C, L-2 ..... L-W, 
counting from the centerline of the tube toward the 
wall in which the interval between layers becomes 
shorter near the wall due to sharp variations of vari- 
ables taking place there. These mesh layers are basi- 
cally used to demonstrate the velocity profile and the 
pressure distribution changing with radial positions. 
Reynolds number were also changed to show its influ- 
ence on flow velocities and vorticities. To observe the 
pressure drop and velocity profiles due to the entrance 
effect of the sudden contraction region, the origin of 
the axial coordinates is located al the reentrance point. 
2.  V e l o c i t y  p r o f i l e s  a n d  v o r t e x  o c c u r r e n c e s  

Fig. 4 shows the relation of velocity prufiles with 
Reynolds number in the 4/1 eontractiorJ tube. The 
velocity at the centerline of the tube rapidly increases 
when the flow goes through the contraction point, 
z =  0, and then remains constant, but it is still far 
greater than that of the upstream. Also, it can be reaf- 
firmed that the incr~_:se of the fluid velocity (or Rey- 

nolds number) accelerates the effect of contraction. 
The velocity distribution along various layers at 

Re = 1.0 and at Re = 10 are depicted in Fig. 5. Except 
the L-C layer, the substantial decrease of Ihe velucity 
just before the abruptly conlrac{ed point z - 0 musl be 
the evidence of occurrences of the vorticity in the ,:,,-- 
her. Closer to the wall is the location, more decrease 
in the velocity field has been fc>und tu indicate the 
onset of a vorticity. It has been shown Ihat effects ~,f 
the vortex occurrence, however, have been decre:.:tsed 
with the increase of Reynolds number or the veh~ciw. 
The convective force of the flow front the Ul)slreant 
due to high Reynolds number is believed tu suppress 
the activity of the vortex and to reduce its magn.ilude. 
The sharp rise of the velocity just after z (I may be 
explained by the consequence of 4/1 coulrar162 r 
the tube�9 

Velocity contours and vortex behaviors in Ihe cur- 
ner region are shown with Re in Fig. 6. For cases uf 
Figs. 6(a) and 6(b), the arrow which represents the 
velocity vector at each nodal point is lengthened accor- 
ding to the magnitude and slanted lu lead each lh,w 
direction. ]n these figures the strength uf the ,,,rt~city 
must be weak enough to be seen by shurl arrow signs, 
as expected. Note that eddies i[l the turner regir 
diminished in size and in strength as the fl~),,,,' r the 
higher Reynolds number is approached. In addiHtm, 
velocities arriving at the entrance turner is fuund t+:~ be 
enlarged in a great amount and is directed h> Ihe 
downward against the pressure ge~erawd by the [)araI- 
lel flow at the entrance. 

The above results of the preset~ study are cr 
tent with previous invesligatiut~s [6,15,16] alth<,ugh 
t:he existence of vortices could be more visually 
detected by using the stream function description in- 
stead of the velocity vector representalior~ used in this 

study. 
The con'~parison of these velocity vectors and w~r- 

rex occurrences for differenl Re wilh experimental data 
of creeping flows [16] and other numerical solulions 
[10,11], is shown in Fig. 7. The enlry pattern observed 
for the Newtonian viscous flow [16] which is the 
typical creeping flow is shown on the upper piclure of 
Fig. 7(a). The flow is almost radial, with only a small 
secondary flow existing in the corner of the upstream 
tube, which is properly consistent with the velocity 
and the vorticity pattern on the lower picture ol: Fig. 
7(a) obtained from the simulation of this work. The 
same conclusion may be drawn from Fig. (b) for Re - 
10, which depicts both simulation results of the pre- 
sent work (on the upper) and those of Boger [11]. 
3.  P r e s s u r e  d i s t r i b u t i o n  

Figs. 8(a) and 8(b) are shown to illustrate our com- 
putational results of the pressure distribution near the 
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contraction. In this plot, the abscissa represents the di- 
mensionless axial distance in which positive numbers 
are the indication of the small tube, while the nega- 
tives are of the large tube. 

Comparing these figures, the pressure rise due to 
collision of the flow from the upstream against the con- 
traction wall is clearly demonstrated to be higher with 
the lower Reynolds number. This may be conjectured 
that viscous flows with the low Reynolds number 

usually develop a full flow pattern, which implies the 
adaptation of the flow to the given obstacle, in much 
slower fashion than the relatively high Reynolds num- 
ber so that before the former makes its full pattern 
according to the geometry encountered, it will hit the 
barrier to produce the higher wall pressure than the 
latter of the more developed case. 

It is also noted from Figs. 8(a) and 8{b) that the 
node of the maximum pressure rise changes with Rey- 
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Re = 1.0 on  the  lower  and  exper imenta l  data of creep ing  f low [17] on the  upper  and (b) for Re = I0 on  the 
upper  and a numerical  solut ion of  Boiler [ II ]  on the  lower.  
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nolds number. That is, at the higher Reynolds number  
the maximum occurs at the earlier node which is more 
toward the upper corner (number 559 instead of 585 at 
Re = 10 in our problem), while at the lower Reynolds 
number  it takes place at the later node which is more 
toward the entry point (number 585 instead of 559 at 
Re = 1.0). This fact instructs us why the size and the 
strength of the vorticity are reduced with the high 
Reynolds number:  for instance, it pushes the vortk:ity 
further up more into the corner by placing the maxi- 
mum pressure closer to that region, but the less magni- 
tude of its maximum relative to the lower Re may be 

associated with the weaker vorticity generated. 

Referring to Figs. 8(a) and 8(b), it is seen that the 
sudden pressure drop at the node 637 reaches -5.8 for 
Re = 1.0 and -11.0 for Re = 10.0 relative to the zero 
value of the dimensionless pressure of the fully deve- 
loped upstream (The pressure value here is meaning- 
less and just gives the concept of the relative size). This 
implies that higher is the Reynolds number, more 
does the pressure drop to show further acceleration of 
the velocity. 

[n this view, the maximum pressure spot seems to 
divide the upper vorticity from the higher acceleration 
of the velocity field. Also, for the lowesl sudden pres- 
sure drop at the node 637 which decreases beyond the 
corresponding value of the center]ine is considered to 
be the velocity which surpass the center velocity. In 
other words, it is the location which gives the fastest 
velocity in the whole flow field. 

The pressure drop along the centerline which has 
been depicted by the L-C layer in Fig. 8 n-fay be the 
typical pressure decrease against the shear force induc- 
ed by the flow because the centerline pressure is beli- 
eved not to be under the influence of sudden contrac- 
tion. The pressure above or below this curve may be 
regarded as the pressure loss or the gain respectively. 
Obviously, Fig. 8 demonstrates that the pressure loss 
(the rise) is further greater than the pressure gain (the 
drop). The ne~ loss, then, is known to be the extra 
pressure loss due to the sudden contraction, it is also 
slhown that the extra pressure loss of the low Reynolds 
number flow is greater than that of the high Reynolds 
number flow. 

Finally, we want to mention that the entrance 
length of the flow disturbance due to contraction per- 
sists longer with high Reynolds number than with 
lower one. 3"he constant pressure gradient developed 
in the downstream in the small tube is the indication 
of the end of the entrance length which has been star- 
ted from the inlet. In our case, the entrance length 
z -0 .2  is required for Re= l .0  and z=1.35 for 
Re 10.0 to reach the fully developed slate, such as il- 
lusrated in Figs. 8(a) and 8(b). 

CONCLUSION 

A focal point of this study was to analyze the 
Navier-Stokes fluid flowing through a 4/1 contraction 
tube. From computational results, we have predicted 
in detail complex flow behaviors near the contraction 
point. For instance, the velocity and the pressure pro- 
file, the entrance length of the flow disturbance, the 
vortex generation with its size and strength, the extra 
pressure loss, the location of the fastest flow velocity, 
and the spot of the maximum pressure rise, etc. have 
been demonstrated with different Reynolds numbers. 
Their effects on different Reynolds numbers has been 
investigated, too, to see how Reynolds number gener- 
ally affects flow conditions. 

To prove the validity of this stud,,', the experimen- 
tal and the numerical outcome performed by others 
are compared with our results. This comparison de- 
monstrates qualitatively a good agreement with each 
other. 

For further works, present work provides a basis of 
solving the Navier-Stokes equation with the energy 
equation to analyze the nonisothermal flow behavior, 
in which the temperature effect on the flow c a n  be 
under investigation. Additionally, because our effort is 
performed at relatively low Reynolds number, the op- 
portunity to examine the given system at high Rey- 
nolds number also remains for the advanced numeri- 
cal endeavor. 

NOMENCLATURE 

g : Gravitational acceleration 
J : System Jacobian matrix 
L : Total tube length 
N : Number- of nodes 
n : Outer normal vector 
P : Pressure 
R : Tube radius 
R : Element residual vectors 
Re : Reynolds number  
r : Radial coordinate 
t : Time 
V, : Radial velocity 
V z : Axial w~'locity 
z : Axial coordinate of the contraction tube 

G r e e k  Let ters  

F r  : Boundary of flow field for radial coordinate 
F' z : Boundary of flow field for axial coordinate 
# : Standard deviation between two consecutive 

iterated solutions 
7/ : A dimensionless coordinate of shape function 
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0# : Bilinear shape function 
r : Nine-node biquadratic shape function 
~k : Unknown vector of formulating variables 
s e : A dimensionless coordinate of shape function 
SO : Flow field 

Subscripts 
n Iteration number 
,r First-order derivative with respect to r 
,z First-order derivative with respect to z 
,zz Second-order derivative with respect to z 

Superscripts 
e : Finite element under consideration 
* : Indication of weighting function 
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